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A description isgivenfor the numerical method of calculating nonsteady,
nonisothermal flows of a real gas in tubes and for the solution on a
computer of certain specific problems associated with the operation

of gas mains.

The developfnent of methods to solve eduations of
nonsteady nonisothermal gas motion in tubes is of no
mean practical interest in view of the calculations
associated with start-up, emergency, and similar
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Fig. 1. Calculation scheme.

specific regimes of drilling operations, as well as
industrial and major gas-main conduits, particularly
in the regions of the Far North.

Since the flow of the gas under actual conditions
is nonisothermal, the solutions of the problems must
be based on consideration of the general equations of
gasdynamics. It is impossible to derive analytical
solutions for these equations and it therefore becomes
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Fig. 2. Change in gas temperature along
pipeline at different instants of starting
period 1) t= 0; 2) 0.03; 3) 0.78; 4) 10.5; 5)
30.5; 6) 40.5 (ideal gas); 4') 10.5; 5') 30.5
(real gas).
necessary to resort to numerical methods involving

the use of contemporary computers. Effective numer-
ical methods have heen developed in rccent years to

solve the general equations of gasdynamics. In partic-
ular, these include the finite-difference methods based
on the use of the so-called implicit difference schemes
(for example, schemes of the "predictor-corrector”
type and their various modifications [1,2]). These
schemes exhibit elevated stability and ensure a rather
high order of accuracy for the approximation of dif-
ferential equations by difference equations. Here the
general equations of nonsteady nonisothermal motion
of a real gas are reduced to a system of quasilinear
differential equations of the parabolic type. For the
numerical solution of the indicated eauations we will
subseauently use explicit finite-difference schemes
which have proved to be rather effective in calculating
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Fig. 3. Change ingas flow rate along a pipeline at
different instants of startingperiod1) t = 0.012:
2) 0.112; 3) 8.012; 4) 28.01; 5) 40.4; 6) 60.5.

a number of specific problems in hydrogasdynamics.
particularly in calculating the nonsteadv isothermal
motions in gas mains [ 3].

1. In deriving the system of equations describing
the one-dimensional nonsteady nonisothermal flow of
a real gas in long tubes, as is usual [4]. we neglect
the changes in the dynamic head and in geometric
height. Moreover, we do not take into consideration
the transfer of heat along the axis of the tube as a
result of heat conduction. The heat-transfer law is
assumed in Newton's form, with the ambient temper-
ature held to be a known function of the coordinates,

Having used the known thermodynamic relationships
and equations of motion for a compressible gas in the
Charnyi form [4], we obtain
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Equation (1) contains the functions z; = z4(P, T) and
cp = ¢p(P,T), which may be given in tables of ex-
perimental data or in analytical form.

The method for the numerical solution of the equa-

tions of nonsteady nonisothermal motion of a real gas,

considered below, makes it possible to employ the
equation of state in any form.

The temperature Ty of the external medium is con-
tained in system (1). In view of the considerable lag
in the process of heat propagation through soil, it may
be regarded as quasi-steady [5], i.e., we can assume
T, = const in this time interval.

For the practical purposes of interest here, as well
as in the light of the unavoidable and considerable
errors in the specification of thermophysical soil con-
stants which, moreover, vary along the length of the
conduit, we will assume that the heat-transfer coeffi-
cient K = const.

The quantity K can be determined from studies
under actus! conditions, if the parameters of the op-
erating gas main are known.

The calculation of the nonsteady nonisothermal
motion of 2 real gas thus reduces to finding the so-
lution for system (1)

P=P(x 1),

5

T=T(x 0, G=G(x )

in the region D¥(a = x =8,
tial conditions

t = 0), satisfying the ini-

Px, 0) = f(x), T(x, 0)=¢(x), Gx 0)- v (2)

and the boundary conditions which, in the general
case, are given by functional relationships of the form

S (P, T, G, e =0, ©u(P, T, G s 0. (3)
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It is assumed that to the instant of time t = 0 the
motion of the gas is steady (PP = P(x), T = T(x); G=
= Gyfort =0, ¢ = x = f). This solution can be ob-
tained from the system of equations which becomes (1),
if the time derivatives with respect to the sought
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Fig. 4. Temperature history

at different points of a pipe-

line 1) T(x,0); 2) x= 0.1; 3)
0.5; 4) 0.9; 5) 1.0,

functions are assumed to be equal to zero, For con-
venience of calculation, system (1) is brought to di~
mensionless form; the scales employed here are the
critical pressures and temperatures (P = P/Pg, T =
=T/T¢), the tube length (x = x/L), the mass flow rate
att =0, (G= G/G)andty = L/cy (t =t/t, ¢ is the
speed of sound in the gas).

2. This boundary problem was solved numerically.
Having used the corresponding approximation of the
derivatives in (1), we obtained the explicit four-point
scheme of the grid method for the system of differ-
ential equations (Fig. 1). (It should be noted that when
zy = 1, the general difference scheme changes into the
corresponding scheme for the equations describingthe
flow of an ideal gas). In the construction of the differ-
ence scheme we approximated the differential equation
by means of difference equations with errors of order
O(h).

The indicated order of error is completely accept-
able when the sought functions need not be calculated
with very high accuracy (within the specified limits of
accuracy for the initial data), which corresponds to
the conditions of most engineering calculations. The
corresponding approximation of the conditions at the
boundaries (for boundary conditions of the form ﬁ(o,_t) =
= f4(t); G(1,t) = f5(t) in the assumption that Eas. (1)
are also valid at the boundaries x = 0 and % = 1) leads
to the difference relationships:

_ - = P — A
Py, b1 = 1 (1) To st =_°itéT_,_°’
1 P, P, -
(—;0’ o = | L k+1 ™ 0 ki1 ] ° (4)
b (2 T)a, 4n1 h

where

Ay = 4, (p-o,ky Tu,ky ao.kv ?Lk);
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BO=BO(p0,k! To.k)v k=0’ lv 29

—2 2
Pn.k+l "‘pn——l.k-}—l =

=—chd, [20 (ﬁn.kﬂ’ 71n.k+l)’ Tn.k+l];
T pn.ku— A, .

Tn. (23

A En. ptl = f_z (Ea-}-l)v
A= 4 (pn'kv T, k'T ~1xh Bi= B, (—pn-kr Tn.k)’
k=0,1,2,.... (5)

The order of magnitude for the error in the approx-
imation of the boundary conditions is O(h).
Determination of P, 4 at the boundary nodes on
the straight line X = 1, reduces to finding the positive
root of the nonlinear algebraic equation (5) (in the case
of an ideal gas, to the finding of the square root; for
a real gas which, for example, follows the Berthelot
equation of state, to the finding of the complete fourth-
degrec algebraic equation).
To calculate P, ;. we use the method of iterations,
with the iterative process built on the formula

—(nk1) () 2 %
Prps1 = (Prpp))= [Pocs iys —ch®; (Presr)| . (8)

The iteration process (6) converges if the following
condition is satisfied:

chd; (P)

2 N <2 (O<1—)< Fn—l, k+1)' (7)
[Prt, 41 — chDy (P) ]

Analysis of expression (7) shows that the conver-
gence of the iterations is ensured for rather small h
and fixed Pp_i, x4t different from zero.

The corresponding algorithms for the solution of
certain specific problems such as, for example, the
problem of stabilizing the temperatures and pressures
of a real gas in an inactive main [6], etc., can be de-
rived from the cited difference scheme.

The presence of the term 82P%9%? in the equations
of system (1) from the conditions of stability imposes
on steps h and 7 a limitation of the form 7 = O(h%).
Practically speaking, for a tentative selection of the
time step T we employed the stability condition ar/i =
=1/2, occurring in the linear case [7]. In application
to the quasi-linear system (1), this limitation is not
too rigid and, as demonstrated by the calculations, the
steps T may be relatively large, commensurate with
the time of a real physical process (for example, when
a =1, the difference scheme remains stable for sev-
eral forms of boundary and initial conditions). This
circumstance in particular makes feasible the use of
the explicit scheme in solving the problems under con-
sideration.

3. To calculate the nonsteady nonisothermal flows
of a real gas in long tubes, we compiled a program in
accordance with the subject numerical method of
solving Egs. (1). The calculations were carried out
on the BESM-2M computer.

Here, for convenience of machine operation and to
make possible future derivations of approximate ana-
lytical solutions, z,(P, T) is taken from the Berthelot
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equation of state [8]. The possibility of using this
equation for practical purposes is demonstrated
in [9].

As an example we have examined the start-up re-
gime in a segment of a gas main for the following
initial data: L = 100 km; D = 0.7 m, G, = 100 kg/sec;
Py =55 - 10 kg/m?; P = 45. 8 - 104 kg/m?; T¢ = 190.6° K;

A =0.012; K = 2. 32 W/m?- deg; the gas is methane. It
is assumed that prior to the instant of time t = 0 the
pressure and temperature of the gas were constant
(P(0, X) = 1.2; T(0,X) = 1. 44). At the instant of time
t = 0 a compressor station was connected to the he-
ginning of the gas-main segment, with a constant
pressure P(O t) = 1.2 and a gas temperature T(O t)
= 1. 67 maintained at the outlet from the compressor.
It is assumed here that the removal of the gas at the
end of the gas main (x = 1) remains constant in time,
i.e., G@1,t)=1.

At the beginning of the process (t— = 0) (Fig. 2),
three zones can be conditionally isolated: 1) the heated
zone near the left boundary ()_( = 0), where the temper-
ature drops sharply to the steady value; 2) the region
with a temperature close to a steady magnitude; 3) the
zone with a temperature less than the steady value
(i.e., the temperature of the soil). With the passage
of time the first and third zones increase, while for
t = 10 the second zone disappears. This interval is
approximately equal to the time of a five-fold passage
of a pressure wave from x = 0 to x = 1 and vice versa.

During the initial instants of time (to t=o. 01) vir-
tually half the tube (0 = X = 0.5) remains in the un-
perturbed state (G = 0; P= Py) (see Fig. 3). Only after
t = 0.1 does the gas begin to move at the left end
(G > 0).

With the passage of time, the mass flow rate along
the length of the tube increases (Fig. 3), whereas the
pressure drops, and when t > 60 with an error on the
order of 5% a steady value is attained (G=1: P = P(x)).

The gas temperature at the various points of the
gas conduits increases with time and when t > 60 tends
toward the steady state. At the points closest to the
end of the tube from which the gas is removed, the
temperature of the gas, with the passage of time, drops
below the temperature of the soil as a result of the

Joule-Thomson effect ((Z—I;)_

< 0) (Fig. 4). Starting
x==1

with the instant of time t =10, at which the front of the
warmer gas reaches the end of the tube, the drop in
temperature due to the Joule~Thomson effect will be
attenuated as a result of the influx of heat from the
moving gas flow, while with a predominance of heat
influx the temperature of the gas will rise with the
passage of time. However, at the end of the tube

(x = 1. 0), the Joule-Thomson effect is not completely
offset and the temperature of the gas will not reach
T,. We see from Fig. 4 that at the tube points x = 0.5
the steady regime is reached when £ = 30, while when
x > 0.5 this time is increased by a factor of 2~3.
During the time interval in which the pressure wave
covers a distance (60—100) L, a conditionally steady
thermal regime is established in the gas conduit.
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If we know the thermal and hydraulic regimes of the
gas main at the various instants of the start-up period,
we can forecast the dynamics for the formation of hy-
~ drate plugs, zones of condensate precipitation, etc.
The time for the calculation of this problem is approx-
imately 5 hr for a magnitude of h = 0, 05.

With this program we have calculated the distri-
bution of temperatures and pressures in an inactive
conduit {6]. To checkonthe accuracy of the calculation
of the sought functions, we carried out calculations
with half a step. The subsequent comparison of the
corresponding results demonstrated their excellent
agreement, indicating the virtual convergence of the
approximate difference solution with the exact.

The subject method of numerical solution for the
equations of nonsteady nonisothermal motion of a real
gas may be used in gas thermodynamic calculations of
major gas-conduit systems.

NOTATION

G is the mass flow rate; P is the pressure; T and
T, are the temperatures of the gas and soil, respec-
tively; A is the hydraulic resistance coefficient; D and
farethediameter and cross-section of the tube; z,
and R are the compressibility factor and gas constant,
respectively; A is the thermal equivalent of work; Cp
is the isobaric heat capacity; K is the heat transfer
coefficient from gas to soil; t is the time; x is the co-
ordinate.
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